Low-Temperature, Dry Transfer-Printing of a Patterned Graphene Monolayer

نویسندگان

  • Sugkyun Cha
  • Minjeong Cha
  • Seojun Lee
  • Jin Hyoun Kang
  • Changsoon Kim
چکیده

Graphene has recently attracted much interest as a material for flexible, transparent electrodes or active layers in electronic and photonic devices. However, realization of such graphene-based devices is limited due to difficulties in obtaining patterned graphene monolayers on top of materials that are degraded when exposed to a high-temperature or wet process. We demonstrate a low-temperature, dry process capable of transfer-printing a patterned graphene monolayer grown on Cu foil onto a target substrate using an elastomeric stamp. A challenge in realizing this is to obtain a high-quality graphene layer on a hydrophobic stamp made of poly(dimethylsiloxane), which is overcome by introducing two crucial modifications to the conventional wet-transfer method - the use of a support layer composed of Au and the decrease in surface tension of the liquid bath. Using this technique, patterns of a graphene monolayer were transfer-printed on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and MoO3, both of which are easily degraded when exposed to an aqueous or aggressive patterning process. We discuss the range of application of this technique, which is currently limited by oligomer contaminants, and possible means to expand it by eliminating the contamination problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer printing of CVD graphene FETs on patterned substrates.

We describe a simple and scalable method for the transfer of CVD graphene for the fabrication of field effect transistors. This is a dry process that uses a modified RCA-cleaning step to improve the surface quality. In contrast to conventional fabrication routes where lithographic steps are performed after the transfer, here graphene is transferred to a pre-patterned substrate. The resulting FE...

متن کامل

Transfer of CVD-grown monolayer graphene onto arbitrary substrates.

Reproducible dry and wet transfer techniques were developed to improve the transfer of large-area monolayer graphene grown on copper foils by chemical vapor deposition (CVD). The techniques reported here allow transfer onto three different classes of substrates: substrates covered with shallow depressions, perforated substrates, and flat substrates. A novel dry transfer technique was used to ma...

متن کامل

Monolayer resist for patterned contact printing of aligned nanowire arrays.

Large-area, patterned printing of nanowires by using fluorinated self-assembled monolayers as the resist layer is demonstrated. By projecting a light pattern on the surface of the monolayer resist in an oxygen-rich environment, sticky and nonsticky regions on the surface are directly defined in a single-step process which then enables the highly specific and patterned transfer of the nanowires ...

متن کامل

Scalable, flexible and high resolution patterning of CVD graphene.

The unique properties of graphene make it a promising material for interconnects in flexible and transparent electronics. To increase the commercial impact of graphene in those applications, a scalable and economical method for producing graphene patterns is required. The direct synthesis of graphene from an area-selectively passivated catalyst substrate can generate patterned graphene of high ...

متن کامل

Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure

In this paper, we explore the linear response of one dimensionalquasiperiodic structure based on Fibonacci sequence composed of silicon dioxide,polystyrene and graphene materials. Here, a graphene monolayer is sandwichedbetween two adjacent layers. The numerical results are obtained by using the standardtransfer matrix method. Due to the presence of graphene sheet in eac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015